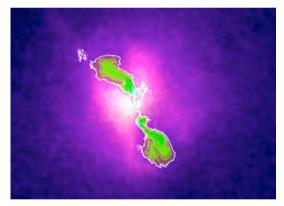
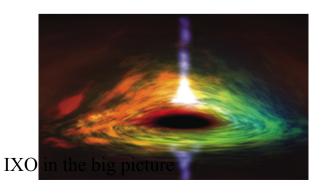

How does IXO fit in the big picture?

Xavier Barcons

Instituto de Física de Cantabria (CSIC-UC), Santander, Spain


Topics


- IXO science goals in context
 - * Are those central to mainstream Astrophysics?
- Synergies with other large facilities
 - * Mutual benefits for both IXO and other facilities

IXO science goals:

- Co-evolution of galaxies and their SMBH
 - * The first SMBH.
 - * Obscured growth of SMBH
 - * Feedback in galaxies and clusters
- Large-scale structure and the creation of chemical elements
 - * Are the missing baryons in the WHIM?
 - * Cluster physics and evolution
 - * Cosmology with clusters
 - * The creation of chemical elements
- Matter under extreme conditions
 - * Physics of strong gravity
 - * Neutron Star Equation of State
- Life cycles of matter and energy:
 - * Physics of SNe and SNR
 - * The ISM in our Galaxy, the GC
- * Stars and planets IXO, Rome, March 2011

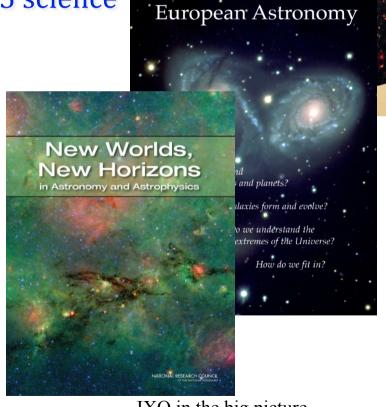
The question

• Are the IXO science goals part of mainstream Astronomy?

or

• Are IXO science goals mostly relevant to X-ray astronomers, but rather marginal to mainstream Astronomy?

Astronomy roadmaps

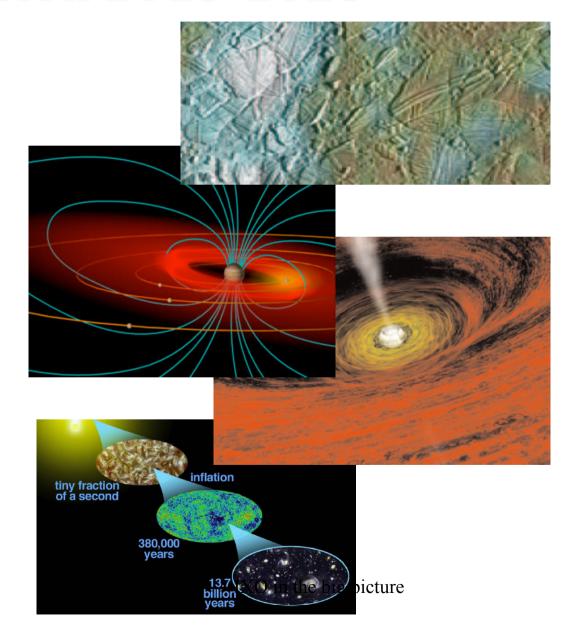

Europe:

* ESA Cosmic Vision 2015-2025 science goals

* ASTRONET Science Vision

USA:

* ASTRO 2010 Decadal Survey


A Science Vision for

Cosmic Vision

IXO in the big picture

Cosmic Vision 2015-2025

- 1. What are the conditions for planet formation and the emergence of life?
- 2. How does the Solar System work?
- 3. What are the fundamental physical laws of the Universe
- 4. How did the Universe originate and what is it made of?

IXO, Rome, March 2011

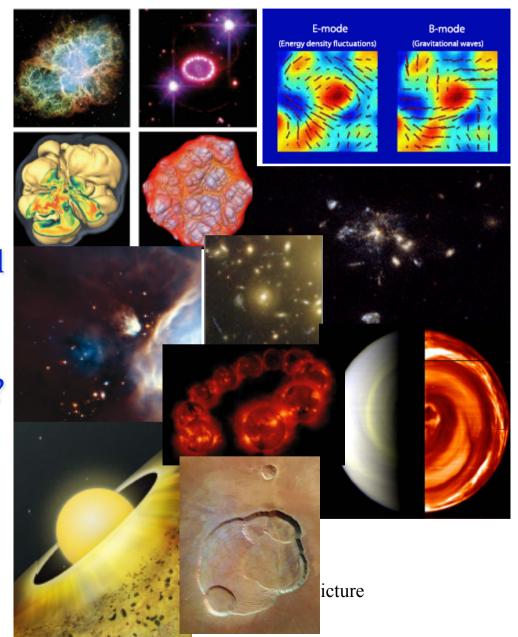
IXO vs Cosmic Vision

What are the fundamental physical laws of the Universe?

- * Explore the limits of contemporary physics
- * The gravitational wave Universe
- * Matter under extreme conditions

How did the Universe originate and what is it made of?

- * The Early Universe
- * The Universe taking shape
- * The evolving violent Universe


IXO needed

IXO useful

Astronet Science Vision

http://www.astronet-eu.org

- What is the origin and evolution of stars and planets?
- How do galaxies form and evolve?
- Do we understand the extremes of the Universe?
- How do we fit in?

IXO in the Astronet Roadmap

Do we understand the extremes of the Universe (7)

- * Towards a coherent picture of DM and DE
- * Test General Relativity around black holes
- * Astrophysics of compact objects, SNe and GRBs
- How did galaxies form and evolve (7)
 - * Detect the first stars, black holes and galaxies
 - * Measure the WHIM metal content and find missing baryons
 - * Mesure the buid-up of gas, dust in galaxies and the connection between black hole and galaxy growth
- How do stars and planets form (6)
 - * Inistial conditions for SF and development into single or multiple systems
 - * Life cycle between ISM and stars through stellar evolution

ASTRO 2010: New worlds, New Horizons in Astronomy & astrophysics

- Cosmic Dawn: Searching for the first stars, galaxies and black holes
 - * Go back to reionisation epoch
 - * Cosmic paleontology: stars with lowest abundances
- New worlds: Seeking nearby habitable planets
 - * Understand distribution of different planet types
 - * Lay down foundations to study nearby Earth-like planets
- Physics of the Universe: Understand scientific principles
 - * Determine properties of Dark Energy
 - * Charactirize Dark Matter
 - * Characterze Inflation
 - * Test General Relativity through BHs and mergers

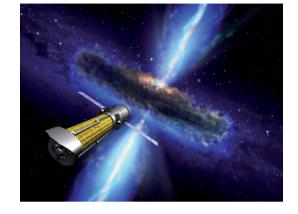
IXO and ASTRO 2010

- **Cosmic Dawn**: Searching for the first stars, galaxies and black holes
 - * Go back to reionisation epoch
 - Cosmic paleontology: stars with lowest abundances
- New worlds: Seeking nearby habitable planets
 - * Understand distribution of different planet types
 - * Lay down foundations to study nearby Earth-like planets
- Physics of the Universe: Understand scientific principles
 - Determine properties of Dark Energy
 - * Characterize Dark Matter
 - * Characterze Inflation
 - * Test General Relativity through BHs and mergers

Which of IXO science goals are high priorities in the roadmaps?

Theme/question	Cosmic Vision	Astronet	Astro2010
Co-evolution of galaxies and their supermassive black holes (SMBH)			
The first SMBH			
Obscured growth of SMBH			
Cosmic feedback from SMBH			
Large-scale structure and the creation of chemical elements			
Missing baryons and the Intergalactic Medium			
Cluster Physics and Evolution			
Galaxy cluster cosmology			
Chemical evolution along cosmic time			
Matter under extreme conditions			
Strong gravity and accretion physics			
Neutron Star Equation of State			

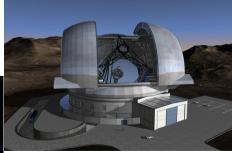
Bottom line


IXO science goals that appear very central to mainstream Astrophysics:

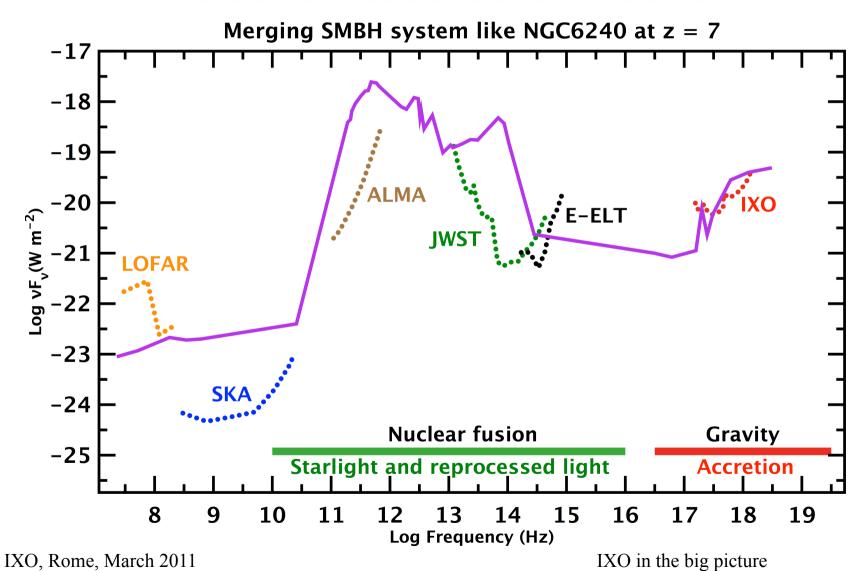
- First SMBH and galaxies after dark ages
- Connection between SMBH and galaxy growth
- GR phenomena around black holes and accretion physics
- Dark Matter and Dark Energy
- Missing baryons and the WHIM
- Cluster physics and evolution
- Chemical evolution
- Neutron Star Equation of state

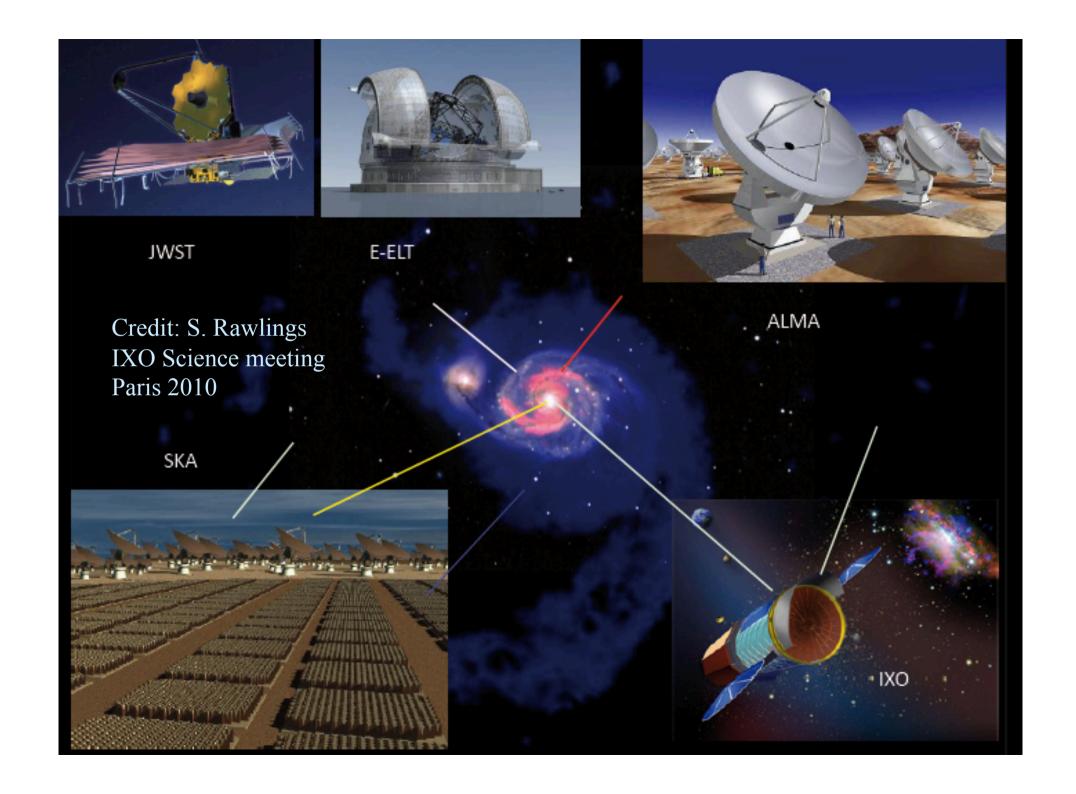
But, for mainstream Astrophysics


- Growing SMBH are not interesting, rather a nuissance masking star formation
- Feedback is "termination of star formation", not larger-scale effects
- Precission cosmology probes are CMB, BAO, lensing and only marginally clusters


Synergies

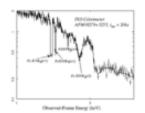
Synergy: Two or more agents working together to produce a result not obtainable by any of the agents independently. (Source: wikipedia)



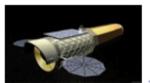


XO in the big picture

IXO in the context of the large observatories to come



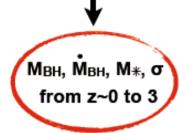
Witnessing coevolution at modest z


IXO-ELT-Euclid synergy flow

Galaxy-BH co-evolution

IXO

High R spectroscopy



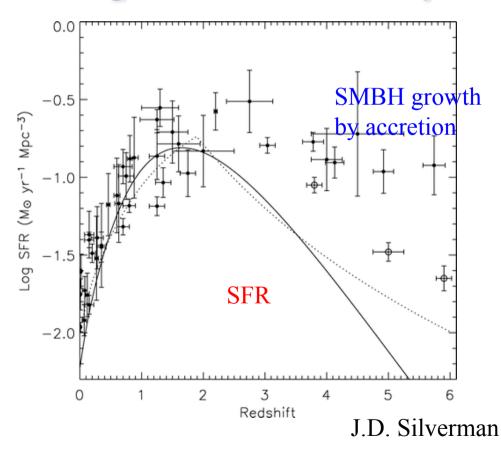
- Kinematics of hot gas from spectral absorption features
- •Feedback mechanisms at z~1-3
- BH accretion rates

Vast reservoir of AGN
for IXO, ELT follow-up

M_{BH}-σ-(M+,L) relation, evolution, scatter

- Direct dynamical BH masses by resolving the Sol out to z~0.5
- . "AGN-free" imaging of hosts with IFUs
- "Virial" BH masses in NIR of IXO selected AGN over a broad range of redshifts, Lx and obscuration

Credit: P. Rosati, IXO Paris meeting

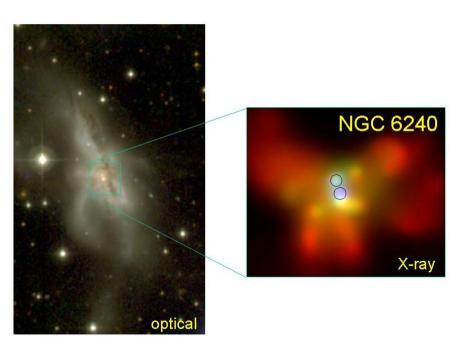


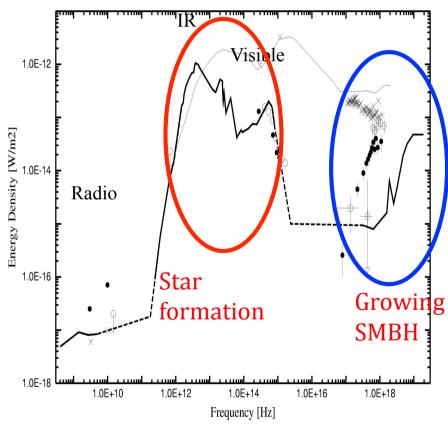
Obscured SMBH growth and star formation

SPICA: SFR @ z~2

10²¹ 10²⁴ Far-IR Through Galactic Mid-IR Center Near-IR -CAS-A Crab Optical 10²¹ 10^{20} 10¹⁹ 10^{3} 104 E, (eV)

SMBH growth vs **SFR** history

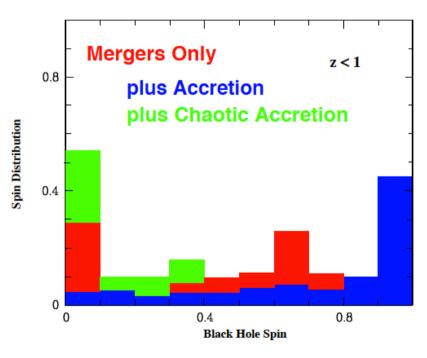



IXO, Rome, March 2011

IXO in the big picture

The obscured population at high-z

X-ray/optical/IR views of NGC620


SMBH spin as a tracer of galaxy evolution

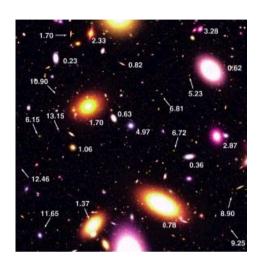
SKA (from jets)

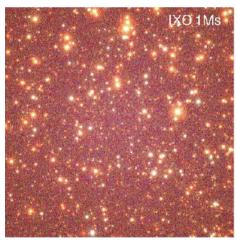
13.5 8.4 4.2 3.2 1.0 8.0 0.6 (B) 0.4 0.2 0.0 0.0 0.5 1.5 2.0 1.0

M-Sansigre & Rawlings 2010

IXO (from Fe line profile)

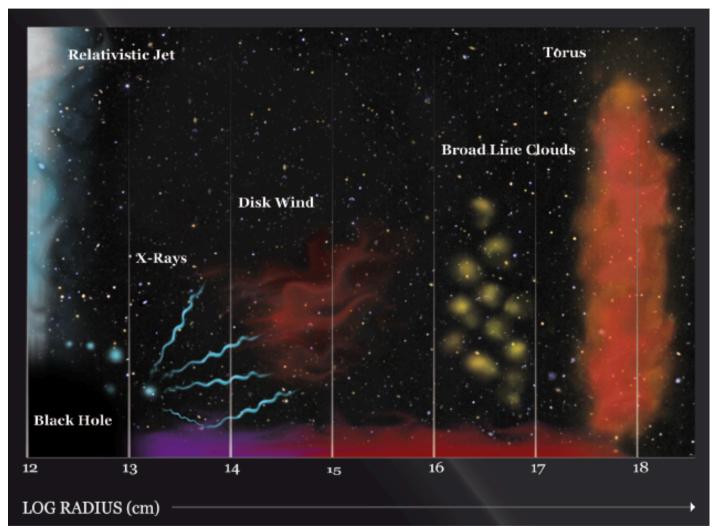
Berti & Volonteri 2008


IXO, Rome, March 2011


IXO in the big picture

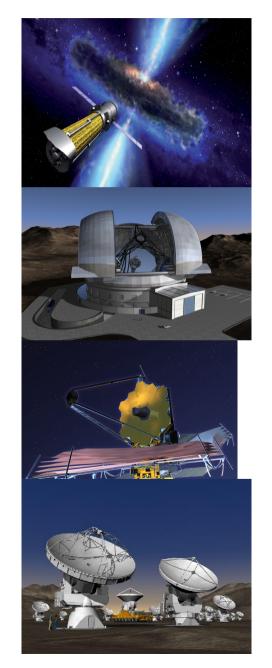
First light & deep surveys

E-ELT/JWST will see starlight of first galaxies up to re-ionisation

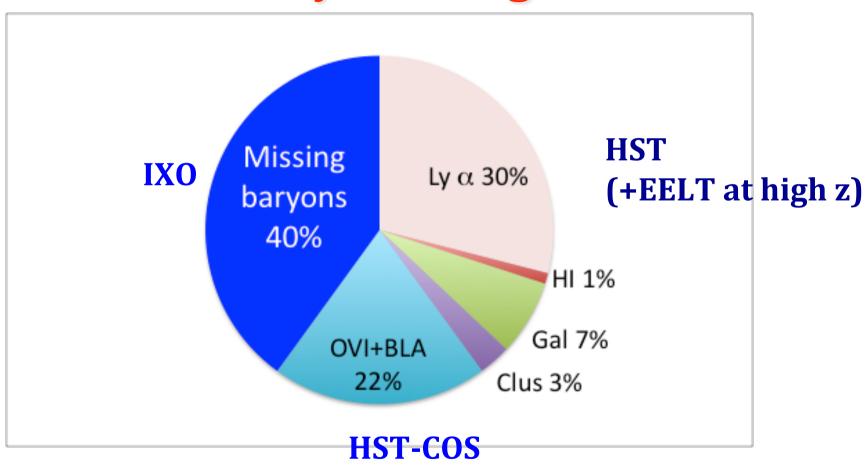

IXO will find in which galaxies there is an accreting SMBH out to z > 7.

SKA will also pinpoint IXO, Rome, March 2011 growing SMBH

Why using X-rays to see growing SMBH?

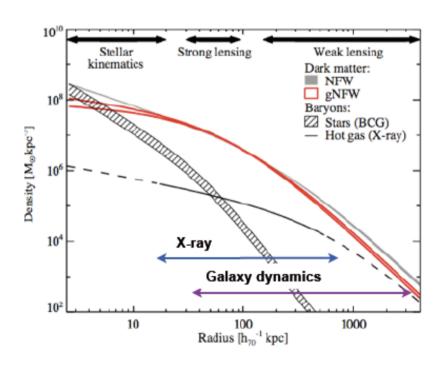

Only moderately biased against obscuration

Originate from very close to the SMBH

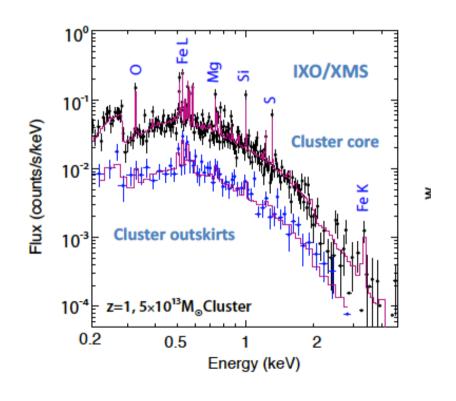

Largely uncontaminated by host galaxy

Obtaining redshifts:

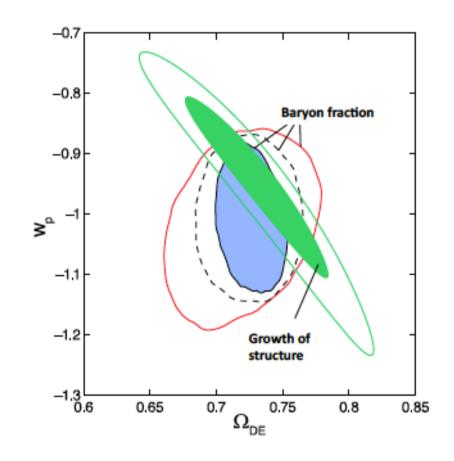
- 1. $F_X > 5 \cdot 10^{-15}$ cgs, autonomous z from IXO
- 2. E-ELT MOS spectroscopy down to $J_{AB}\sim26.5$ (almost unique counterparts)
- 3. JWST/NIRSPEC spectroscopy of fainter objects
- 4. ALMA CO or [CII] spectroscopy of particularly difficult targets



The baryon budget


Large Scale Structure: DM and baryons in clusters

- Mass measurements from lensing (EELT, LSST) & ICM (IXO)
 - * Measure/constrain turbulence (IXO)
- Accurate
 measurement of
 baryon mass
 contribution to
 cluster mass


Chemical evolution

- Intracluster medium enriched to Z~0.3 Z_⊙ by z~1.4
- Study:
 - * ICM metalicities at highest z (IXO)
 - * Metalicities of individual cluster galaxias (EELT)

Precission cosmology

- DES/LSST/JPAS
 - * BAOs, SNe,
- EUCLID:
 - * BAOs & lensing
- EELT
 - * Real time expansion
- IXO/eROSITA
 - * Cluster GOS & fgas

Life cycles of matter & energy

Cold Universe:

SPICA (FIR)

ALMA (mm/submm)

- Supernovae and SNRs
- Particle acceleration
- Stellar mass loss
- Young Stellar Objects
- Our Galaxy's ISM

Hot Universe:

IXO (X-rays)

CTA (VHE γ-rays)

Outlook

- IXO science case contains goals which are key elements of mainstream astrophysics.
 - * Likely first opportunity for a major X-ray observatory mission to "catch up"
 - * A number of these goals drive IXO's requirements
- Significant synergies (i.e. potential mutual benefit) with other projects:
 - * SPICA, EELT, JWST and ALMA in the top list
 - * Also EUCLID and LSST
 - * Relevant to all themes of IXO science